Internal loading of phosphate in Lake Erie Central Basin.

نویسندگان

  • Adina Paytan
  • Kathryn Roberts
  • Sue Watson
  • Sara Peek
  • Pei-Chuan Chuang
  • Delphine Defforey
  • Carol Kendall
چکیده

After significant reductions in external phosphorus (P) loads, and subsequent water quality improvements in the early 1980s, the water quality of Lake Erie has declined considerably over the past decade. The frequency and magnitude of harmful algal blooms (primarily in the western basin) and the extent of hypoxic bottom waters in the central basin have increased. The decline in ecosystem health, despite meeting goals for external P loads, has sparked a renewed effort to understand P cycling in the lake. We use pore-water P concentration profiles and sediment cores incubation experiments to quantify the P flux from Lake Erie central basin sediments. In addition, the oxygen isotopes of phosphate were investigated to assess the isotopic signature of sedimentary phosphate inputs relative to the isotopic signature of phosphate in lake water. Extrapolating the total P sediment flux based on the pore-water profiles to the whole area of the central basin ranged from 300 to 1250metric tons per year and using the flux based on core incubation experiments an annual flux of roughly 2400metric tons of P is calculated. These estimates amount to 8-20% of the total external input of P to Lake Erie. The isotopic signature of phosphate in the extractable fraction of the sediments (~18‰) can explain the non-equilibrium isotope values of dissolved phosphate in the deep water of the central basin of Lake Erie, and this is consistent with sediments as an important internal source of P in the Lake.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A decline in benthic algal production may explain recent hypoxic events in Lake Erie's central basin

Article history: Received 23 November 2016 Accepted 19 March 2017 Available online 6 April 2017 Since the late 1990s, the central basin of Lake Erie has reputedly experienced an increase in the frequency and severity of hypoxic events. However, total phosphorus (TP) loading, in-lake TP concentrations, chlorophyll a (Chl a), and sediment oxygen demand (SOD) have all declined in the central basin...

متن کامل

Record-breaking Lake Erie hypoxia during 2012 drought.

Hypoxia has been observed in the central basin of Lake Erie for decades. To understand the impact of various controlling factors, we analyze a record of hypoxic extents for Lake Erie for 1985–2012 and develop a parsimonious model of their interannual variability. We find that the 2012 North American drought and accompanying low tributary discharge was associated with a record-breaking hypoxic e...

متن کامل

Using oxygen isotopes of phosphate to trace phosphorus sources and cycling in Lake Erie.

Water samples collected during three sampling trips to Lake Erie displayed oxygen isotopic values of dissolved phosphate (delta18Op) that were largely out of equilibrium with ambient conditions, indicating that source signatures may be discerned. delta18Op, values in the Lake ranged from +10% per hundred to +17% per hundred, whereas the equilibrium value was expected to be around +14% per hundr...

متن کامل

Modeling Hypoxia in the Central Basin of Lake Erie under Potential Phosphorus Load Reduction Scenarios

A 1-dimensional (vertical), linked hydrodynamic and eutrophication model that was previously calibrated and corroborated with 19 years (1987-2005) of observations in the central basin of Lake Erie, was applied as part of a group of models capable of forecasting ecosystem responses to altered phosphorus loads to Lake Erie. The results were part of the effort guiding the setting of new phosphorus...

متن کامل

Vertical Stratification of Soil Phosphorus as a Concern for Dissolved Phosphorus Runoff in the Lake Erie Basin.

During the re-eutrophication of Lake Erie, dissolved reactive phosphorus (DRP) loading and concentrations to the lake have nearly doubled, while particulate phosphorus (PP) has remained relatively constant. One potential cause of increased DRP concentrations is P stratification, or the buildup of soil-test P (STP) in the upper soil layer (<5 cm). Stratification often accompanies no-till and mul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Science of the total environment

دوره 579  شماره 

صفحات  -

تاریخ انتشار 2017